
QuickCalc User Guide.

Number Representation, Assignment, and Conversion

Variables

“Double” (or “DOUBLE”) floating-point variables (approx. 16 significant digits,
range: approx. ±10308

The actual range of DOUBLE floating-point variables is:

maximum: ±1.7976931348623157e+308, Anything larger is
considered “infinite”

minimum: ±4.9406564584124654e-324. Anything smaller
becomes zero. This is the smallest number that can be
represented in DOUBLE floating point. It has only one bit of
significance, and equals (in hex) .0000000000001 x 2-1023.

minimum with full precision (all digits significant):
±2.2250738585072014e-308. Numbers smaller than this
lose precision.

“Long” (or “LONGMATH”) floating-point (or integer) variables (length up to 1

million, limited by machine memory, range: approx. ±101,000,000.

String variables and arrays, which may hold number strings in certain cases,
described below.

Constants

Built-in constants like “PI” (DOUBLE) and “LONGPI” (LONGMATH).

Number strings, which are character strings containing digits in the valid BASIC

format. Example: [±][dd...dd][.][dd…dd][[e|E][±]dd…dd]. The number
string must be able to convert correctly into the format determined by its
ultimate use.

Usage

Variable names may appear in your program wherever a number is desired. The
current value of that variable will be used. If no value has been assigned to that
variable, it is assumed to have a zero value.

Note: Variable names may also be referenced indirectly (by string
expressions) using the @(string-expression) function. See
“Indirect Name Reference”, below.

Number strings may be coded into your program (without quotes) in expressions,
as subscripts, as function parameters, or anywhere as number is required. In

general, number strings, or constants, may be used interchangeably with variables,
except that you cannot assign a value to a number string, and statement numbers
may not be variables.

Number strings may also appear in DATA statements, and in data read in through
INPUT and INPUT # statements. (see “Reading, Writing, and Printing Long
Numbers” below.)

Assignment

A number string may be assigned to a variable.

It will be converted, if possible, to match the type of variable to which it is
being assigned. An error will be generated if the number cannot be
converted.

Number strings are not converted until they are used. They are stored in
their string format until assigned to a variable or used as a parameter to a
function or in some other way. In this way, precision is not lost if the
number will ultimately be used as a LONGMATH, and time is not wasted
converting it into a LONGMATH if it will be used as a DOUBLE. (See
“Conversion”)

Number strings may be assigned to string variables, if desired, in which
case they are not converted.

One variable may be assigned to another.

It will be converted, if possible, to match the type of variable to which it is
being assigned. An error will be generated if the number cannot be
converted.

Numeric variables may be assigned to string variables or string arrays
(described below).

String variables containing valid numeric strings may be assigned to
DOUBLE variables.

If a string is not a valid numeric string, the VAL () function may be
used to extract the numeric portion from the beginning of the
string.

String variables (and constants) may NOT be assigned to LONGMATH
variables (exception: see the LONG () function, below).

The result of an expression evaluation or function will be either
LONGMATH, DOUBLE, or string, and may be assigned to a variable as
described above.

Conversion

In any arithmetic operation, numbers will be automatically converted to match
each other, as follows:

If one operand is LONGMATH and the other is DOUBLE, the DOUBLE will
be converted to LONGMATH, the operation will be performed using long
arithmetic, and the result will be LONGMATH.

If one operand is LONGMATH or DOUBLE and the other is a number string,
the number string will be converted (if possible) to match the other
operand. If it can’t be converted into a DOUBLE, then both operands will
be converted to LONGMATH.

If both operands are number strings, they will be both converted to
DOUBLE, if possible. Otherwise, they will both be converted into
LONGMATH. Numbers longer than 16 digits, greater than
±1.7976931348623157e+308 or smaller than 2.225073858507201e-308
will automatically be converted to LONGMATH to avoid loss of precision.

A string or string variable which contains a valid number string may be
used anywhere a number string is valid (in expressions, parameters,
subscripts, etc.) For example, a = SQR ("3") is valid. The string will be
interpreted as a number string and converted to a DOUBLE value of 3.

a = SQR ("ABC") is not valid because “ABC” cannot be converted
to a number.

An exception is the + function. For strings, this signifies
concatenation ("AB" + "CD" = "ABCD"). You can’t mix strings
and numbers in this case.

Number strings with exponents too large for DOUBLE, or containing more than 16
digits, will automatically be converted into LONGMATH.

Functions with more than one parameter will have the parameters converted to
match each other (if necessary), as described above.

The results of one operation will affect the next operation in an expression. Since
expressions are evaluated from left-to-right, and conversions are performed as
needed, the way you order your expression may affect the result.

Long (LONGMATH) vs. short (DOUBLE) Functions

Mathematical functions have long and short versions, depending on the type of
arguments they are passed. If the argument or arguments is/are LONGMATH, the
long version of the function is called, resulting in a LONGMATH being returned. If
there are more than one argument and they are different types, the DOUBLE will
be converted up, if necessary, to match the LONGMATH.

Functions which have long and short versions are:

sqr (x) half (x) sgn (x) sin (x) cos (x)
tan (x) cot (x) atn (x) acot (x) log (x)
log10 (x) exp (x) exp10 (x) abs (x) fix (x)
int (x) cint (x) mod (x, y) str$ (x [, f$])

Functions which expect short arguments, but will use long values and convert
them, are:

hex$ (x, y) short (x) open (..x..) chr$(x)
string$ (x,y) space$ (x) tab (x) instr ([x,] a$, b$)
left$ (a$, x) right$ (a$, x) mid$(a$, x, y) tab (x)

Statements which expect short arguments, but will use long values and convert
them:

color (x) float (x) open (..x..) close (x,..) mid$ (a$, x, y)

LONG (x) accepts anything (number strings, numbers, strings and string arrays)
and returns a LONGMATH.

VAL (x$) returns a numeric string, which can be assigned to a numeric variable
(DOUBLE or LONGMATH) or used in a numeric expression. If it is assigned to a
string variable or printed directly, it will be treated as a string containing the
numeric part of x$.

The FOR statement will use either a DOUBLE or LONGMATH as the control
variable. The expressions for the initial value and the TO and STEP values will be
converted to match the control variable. It is far more efficient (fast) to use
DOUBLEs than LONGMATHs if a long control variable is not necessary.

The WHILE statement expects an expression. The expression is considered TRUE
if it results in a number which is not zero, a string which is not empty, or a

number string which does not convert to zero. The same is true for the IF
statement.

Note: All variables and arrays are, by default, assumed to be double, and most
functions default to DOUBLE math, unless one of the arguments is LONGMATH
(see above). You can, optionally, choose to run your program with LONGMATH
numbers and variables only. (See “Working With Long Numbers”.)

Long number representation as a string or string array.

In order to represent long (LONGMATH) numbers as character strings, it is
allowable to assign a variable (or the result of an expression or function) to a
string (if it is less than 256 characters long), or to a string array which is
dimensioned to have enough elements to hold the entire long number.

The string array is specified as stringarray$ and is used as follows:

 stringarray$ = expression which evaluates to a [long] number

A DOUBLE variable may be assigned to a string by first converting it into a
LONGMATH value (using the LONG () function) and then assigning it to the
string. Caution: the resulting LONGMATH number could be as long as the
floating-point length, which may be too long for a string variable. You may, of
course, also use the STR$ function.

You may NOT perform arithmetic on the resulting strings, except

LONG (string$) or LONG (stringarray$) converts the string or string array
into a LONGMATH number which can be used wherever a number is
desired.

You may use string operations on the strings in the string array. Be careful not to
invalidate the number format if you plan on using the number in a
subsequent arithmetic operation or function.

Reading, Writing, and Printing Long Numbers.

You may code a LONGMATH number value into a DATA statement, enter it as a
response to an INPUT statement, or type it into a file which will be read by an
INPUT # statement. The limit on length is 255 characters, including signs,
decimals, and exponent. This is in the form of a number string, and is not
enclosed in quotes.

LONGMATH values may be printed with the PRINT statement. They will be
formatted into a long string and printed without quotes on as many lines as

needed, with 80 characters per line. If printed to a file with PRINT #, the lines will
be as long as the logical record length of the file (see OPEN statement).

LONGMATH values may now be formatted with the PRINT USING statement. The
format is “www[.[ppp]][c]”. (See “Working With Long Numbers”.)

Unformatted printed LONGMATH numbers cannot be read back with INPUT #
unless they are less than 256 characters long, and contained on one line in the file.

If, instead, you write the LONGMATH value to the file using the WRITE #
statement, the number will be formatted as a series of quoted strings which can be
read with the INPUT # statement and assigned to a LONGMATH variable. The
format that is written to the file looks like:

"Length=nnnn"
"formatted long number – first part"
"formatted long number – second part"
….
"formatted long number – last part"

where the total number of characters in all the strings is nnnn. Each string will be
no longer than 78 characters (plus the two quotes), and no longer than the file
record length – 2.

When the number is assigned to a variable, it will be rounded to the current
floating-pt-length.

You may hand-code a long number in that format if you wish, but it must follow
that format exactly, or you could crash the program.

The above format works only for INPUT #, not for INPUT or READ.

Conversion Examples:

Assume x and y are LONGMATH variables, and a and b are DOUBLE.

a=b Normal. DOUBLE assigned without conversion.
x=y Normal. LONGMATH assigned without conversion.
a=x x is converted, if possible, to DOUBLE and assigned to a.

 x=a a is converted to LONGMATH and assigned to x.

x+a a is converted to LONGMATH and added to x. Result is
LONGMATH.

a+b+y a and b are added without conversion. Intermediate result is
DOUBLE, which is converted to LONGMATH and added to y.
Result is LONGMATH.

a+x+y a is converted to LONGMATH and added to x. Result is
LONGMATH, which is added to y without conversion.

LONG(a/b) a and b are both DOUBLE, so they are divided, resulting in a
DOUBLE, which is converted to a LONGMATH by the LONG
function.

LONG(a)/b The function LONG(a) results in a LONGMATH. b is therefore
converted to LONGMATH before doing a LONGMATH divide,
resulting in a LONGMATH.

SIN(a) Since a is DOUBLE, the short sine function is called, resulting
in a DOUBLE.

SIN(x) Since x is LONGMATH, the long sine function is called,
 resulting in a LONGMATH.
SIN(a/x) a is converted to LONGMATH and then divided by x. Since the
 result is a LONGMATH, the long sine function is called,
 resulting in a LONGMATH.

x+1e20 The number string is converted to a LONGMATH and added to x,
 resulting in a LONGMATH.
a+1e20 The number string is converted into a DOUBLE and added to a,
 resulting in a DOUBLE.
x+1e2000 The number string is converted to a LONGMATH and added to x,
 resulting in a LONGMATH.
a+1e2000 The number string is too large to convert to DOUBLE, so it is

converted to LONGMATH. a is then converted to LONGMATH
to match it and they are added. Result is a LONGMATH.

b= a+1e2000 The same as above, except that the result cannot be converted back
into a DOUBLE, so an error occurs.

b=a+.1234567890123456789
 Rather than truncate the long (> 16 digits) number, it is converted
 To a LONGMATH. a is then converted to LONGMATH to
 Match it, and they are added. Result is LONGMATH, which is
 Converted to a DOUBLE and assigned to b.

If you wish to avoid the confusion and issues described above regarding which
numbers are long and short, and how and when they are converted, you can
choose to work with long numbers only (see “Working With Long Numbers”).

Where You Can Use Numbers (besides arithmetic).

DOUBLE and LONGMATH variables and number strings, or expressions which
evaluate to numbers may be used nearly anywhere a number is called for,
provided their values are within the proper range. However, keep in mind
that using LONGMATH numbers where the precision is not needed is inefficient
and will slow your program down.

file numbers (in INPUT #, WRITE #, PRINT #, OPEN and CLOSE)
logical record length (in OPEN)
floating point length (in FLOAT)
sizes of arrays (in DIM array (n,…) and LONG longmath-array (n,…))
indexes for references to arrays (a = array (i))
logic operations (IF a = 5.7e25, WHILE x<10, etc.)
parameters for functions (depending on the function) (a = fn (n, …)
control variables and limits (in FOR)
character positions & counts (LEFT$, RIGHT$, MID$, INSTR)
--- more

Notes on Precision

In floating-point numbers, you have a defined “floating-point length”, which is
the maximum number of significant digits in a number, disregarding the decimal
point and optional exponent. This defines how the number is stored, and to how
many digits a calculation is carried out. Answers are usually rounded to the
closest value of the least-significant digit. Therefore, if the floating-point length
is 1000, the calculated value of 2/3 would be .6666-------66667, where the 7 is
the 1000th digit, and is the result of rounding.

Floating-point numbers are seldom exact, unless the calculation terminated before
the floating-point length. So the numbers are said to be “accurate to n digits”,
where n is the floating-point length. What does that mean?

If you calculate the square root of a number and save it as a floating-point
variable, and then square it, the result will usually not be exactly the same as the
original number, and it may not be accurate to n digits, due to rounding. So
SQR(2) * SQR (2) may come out to 1.999----9999, but the square root is said to be
“accurate to n digits” if increasing the last digit by 1 will result in a number whose
square goes above 2 (like 2.0000----0001). Similarly, if the square root had been
rounded up so that the square was slightly above 2, subtracting one in the last
digit would put the result below 2. We can’t get any closer than that with n digits.

Therefore, the “correct” answer, to n digits, is the number that comes closest to
the value we want, rounded to the nth digit.

Some functions, like arctangent, lose precision when the argument is very large.
For, example, (with a length of 50, and expressing angles in degrees):

TAN (ATN (LONG (2000000) / 3))=
= TAN (89.999914056330730440976436754898371863507071633129)
= 666666.66666666666666666666666666666666666666596892.

This appears to have a large error, but when you add 1 to the tangent argument,

 TAN (89.999914056330730440976436754898371863507071633130)

= 666666.66666666666666666666666666666666666667372594.

The second error is larger, so the calculated arctangent is “correct”, since it the
closest value which can be expressed in 50 digits.

The “raise to power” function (x^y) is calculated as EXP (LOG (x) * y). This can
result in a loss of precision since the result of the LOG function is shortened and
rounded before using it as an argument to the exponential function. Also, the
characteristic of the logarithm occupies digits but does not contribute to the
precision of the result, only its magnitude. To compensate for these, the x^y is
calculated at a higher precision and the result rounded back to n digits.

You can improve the precision of any function or calculation in the same manner.
Simply increase the floating-point length, do the calculation, reset the length, and
re-assign the value (which will force rounding to n digits. Example:

long x
float floatingptlength+8
x= tan (atn (long (2000000) / 3))
float floatingptlength-8
x=x // forces rounding
print x

result: 666666.6667

In a similar manner, you can check the precision of any calculation by doing it at
a higher precision and comparing the answers. If the lower precision number
matches the first n digits of the higher precision number, then those digits can be
considered accurate.

Hexadecimal Strings.

The function HEX$ can create a string representation of a number in hexadecimal.
It is, however, useless for LONGMATH numbers or non-integer numbers.

QuickCalc includes a new function: HEXCONVERT, which will convert
LONGMATH numbers to hexadecimal and back, and it works as follows:

LONGMATH to hex string variable

To convert a LONGMATH number into hex, specify

HEXCONVERT (num-expr).

DOUBLE variables and number strings will first be converted to
LONGMATH.

The result is a string representing the hexadecimal equivalent of the
number. The integer portion of the hex number (plus sign and decimal
point) must be less than 255 characters long. The portion to the right of
the decimal point will be converted, and carried out to floating_pt_length
characters, and will be truncated (not rounded) , if necessary, to fit in the
255-character string. There is no exponent.

The resulting string from this form of HEXCONVERT may be assigned to
a string variable or used in an expression, i.e.,

“abc” + HEXCONVERT (123.45).

LONGMATH to hex string array.

If the LONGMATH number is too long for a single 255-byte string, it may
be converted into a string array. The array must have been previously
dimensioned, and must contain enough elements to hold the desired
length, at 255 bytes per element. Specify the statement:

string-array$ = HEXCONVERT (num-expr).

num-expr may be a LONGMATH variable or any numeric expression
which can be converted into LONGMATH.

This form of HEXCONVERT may only be assigned to a string array. It may
not be used in an expression, printed, etc. If the resulting string is too long
and is assigned to a string variable, it will create an error.

The string array is handled similarly to the way it is used for LONGMATH
variables, however the hex strings may not be used in the LONG function.

The string array may be printed, written with WRITE #, and read back in
with INPUT #, just like string arrays created from LONGMATH numbers.
(The strings are not compatible with LONGMATH numbers.)

Hex string to LONGMATH variable.

You can convert hex strings back to decimal with the same function:

longmath-value = HEXCONVERT (string-expr | string-array)

The string expression (or array) must contain no characters other than
valid hex digits (0-9 and A-F or a-f), plus an optional sign and only one
(optional) decimal point. No other characters, including leading blanks,
are permitted.

The result is a LONGMATH value, which can be used in an expression,
printed, etc. If it is assigned to a DOUBLE variable, it will be converted, if
possible. The precision of the resulting LONGMATH value is rounded to
FLOATINGPTLENGTH digits.

If a long hex string array was previously written to a file with the WRITE #
statement and then later read back in to a string array with the INPUT #
statement, that string array may be converted back to decimal in this
manner.

Notes on Hexadecimal Strings.

You can’t do arithmetic on hex strings. You can convert them to
LONGMATH, perform arithmetic or functions on them, and then convert
them back to hex strings.

Remember that DOUBLE variables only contain about 16 digits of
precision. Although you can convert them to hex, the results may not be
what you expect. 1/10 as a DOUBLE is .10000000000000001, and 10200
as a DOUBLE is 9.9999999999999997e+199. These differences may
seem insignificant and may disappear when rounding, but as LONGMATH
values, the differences are noticeable. The hex conversions of the
DOUBLE values will be different from the corresponding LONGMATH
numbers. If you want exact hex conversions, start with LONGMATH
values. For example, use LONG(10)^200 instead of 10^200 to force the
calculation to take place using LONGMATH functions.

Fractions which are simple in decimal may result in un-ending or
infinitely-repeating strings in hexadecimal. For example, 1/10 is .1 in
decimal, but is .199999999…. in hex. Therefore, a number converted to
hex and back again may not be exactly the same.

Hex strings are not rounded.

Hex strings are shorter than their corresponding decimal strings.
Therefore, a 50-digit decimal fraction will only have about 41 digits of
accuracy, even though the string is longer. You may want to increase the
floating point length before converting and then truncate the string
afterward.

Remember that in floating-point (FLOAT) mode, LONGMATH numbers are
rounded to the current floating point length, so large integers may not be
exact. For large integer calculations, make sure the floating point length
(FLOAT nnn) is longer than the longest integer, or do your calculations in
INTEGER mode.

String arrays use a lot of memory. The default “pool” of memory for
string variables is 64K. If you are working with really long numbers, you
will probably want to increase that to a least twice the size of all your
string arrays combined to avoid running out of string space. It is better to
leave the numbers in their LONGMATH form, which doesn’t use string
space.

The direction of the HEXCONVERT function (decimal to hex or hex to
decimal) depends on the parameter given. If the parameter is a constant, it
is assumed to be hex if it is in quotes, otherwise, it is assumed to be
decimal.

If you are in INTEGER mode, conversions in either direction will ignore
anything to the right of the decimal point and will return an integer. You
can also specify HEXCONVERT (FIX (num-expr)) to get an integer result
and still remain in floating-point mode.

Negative hex strings are shown with a minus sign. If you want the
number to be in 16-complement (where -1 = FFFF…FFFF), specify
HEXCONVERT (LONG(16)^n – value). Pre-calculate the 16^n if you are
going to do this a lot.

Note: For accuracy and speed, it is better to calculate large powers
of 16 by multiplying, rather than using the power function (16^n).
For example, calculating 16^65536 can be done with the
following:

LONG b
INTEGER
b=16
b=b*b*b*b*b*b*b*b*b*b*b*b*b*b*b*b // 16^16
b=b*b*b*b*b*b*b*b*b*b*b*b*b*b*b*b // 16^256
b=b*b*b*b*b*b*b*b*b*b*b*b*b*b*b*b // 16^4096
b=b*b*b*b*b*b*b*b*b*b*b*b*b*b*b*b // 16^65536

This gives an exact number 78914 digits long, and although 64
multiplies are required, this is still a lot faster than doing a
logarithm and exponentiation at that length.

Note: This same calculation can be done in only 16 multiplies

(much faster) using the code:

b=16
for i = 1 to 16
 b=b*b
next

This only works because the exponent (65536) is an exact
power of 16.

